Tài liệu: KHÁI QUÁT CÁC LĨNH VỰC ỨNG DỤNG CỦA TTNT

Tài liệu
Huynh Tram Vo

Tóm tắt nội dung

KHÁI QUÁT CÁC LĨNH VỰC ỨNG DỤNG CỦA TTNT
KHÁI QUÁT CÁC LĨNH VỰC ỨNG DỤNG CỦA TTNT

Nội dung

KHÁI QUÁT CÁC LĨNH VỰC ỨNG DỤNG CỦA TTNT

Hai mối quan tâm nền tảng nhất của các nhà nghiên cứu TTNT là biểu diễn tri thức (knowledge representation) và tìm kiếm (search). Sự quan tâm thứ nhất chú ý đến vấn đề nắm bắt theo một ngôn ngữ hình thức, tức là một dạng thức thích hợp để máy tính vận hành, phạm vi tri thức đầy đủ mà hành vi thông minh đòi hỏi. Trong khi, tìm kiếm là kỹ thuật giải quyết vấn đề theo cách khảo sát có hệ thống một không gian trạng thái bài toán (problem state), tức là các giai đoạn tuần tự và có chọn lựa trong quá trình giải quyết vấn đề.

Giống như hầu hết các ngành khoa học khác, Trí Tuệ Nhân Tạo cũng được phân thành những ngành con. Trong khi chia sẻ một tiếp cận giải quyết vấn đề cơ bản, các ngành con này có các mối quan tâm đến các ứng dụng khác nhau. Phần sau sẽ phác thảo tổng thể một vài lĩnh vực ứng dụng chính và những đóng góp của chúng cho Trí tuệ nhân tạo.

Trò chơi

Ngay từ thời kỳ đầu của việc nghiên cứu vấn đề tìm kiếm trong không gian trạng thái, người ta đã tiến hành nhiều thử nghiệm bằng cách sử dụng các trò chơi thông dụng có bàn cờ như cờ đam (checker), cờ vuatrò đố 15 ô (15 puzzule). Ngoài sức quyến rũ do tính chất trí óc vốn có trong các trò chơi có bàn cờ, có nhiều tính nhất định làm cho chúng trở thành một đối tượng lý tưởng của thời kỳ này. Hầu hết các trò chơi đều sử dụng một tập hợp các luật chơi được xác định rõ ràng. Điều này làm cho việc phát sinh không gian tìm kiếm trở nên dễ dàng và giải phóng nhiều nghiên cứu khỏi những sự mơ hồ và phức tạp vốn có trong các bài toán ít cấu trúc hơn. Hình dạng của những bàn cờ sử dụng trong các trò chơi này dễ dàng được biểu diễn vào máy tính, trong khi không đòi hỏi một hình thức khó hiểu cần thiết nào để nắm bắt những tinh tế và ngữ nghĩa trong những lĩnh vực bài toán phức tạp hơn. Do có thể chơi các trò chơi một cách dễ dàng nên việc thử nghiệm một chương trình chơi trò chơi không phải trả một gánh nặng nào về tài chính hay đạo đức.

Các trò chơi có thể phát sinh ra một số lượng không gian tìm kiếm cực kỳ lớn. Những không gian này đủ lớn và phức tạp để đòi hỏi những kỹ thuật mạnh nhằm quyết định xem những chọn lựa nào cần được khảo sát trong không gian bài toán. Những kỹ thuật này được gọi là các heuristic và chúng tạo thành một lĩnh vực lớn trong nghiên cứu TTNT. Một heuristic là một chiến lược giải quyết vấn đề tốt nhưng tiềm ẩn khả năng thất bại, chẳng hạn như việc kiểm tra để biết chắc rằng một thiết bị không nhạy đã được cắm vào trước khi giả định rằng nó bị hỏng, hay cố gắng bảo vệ quân cờ hoàng hậu của bạn khỏi bị bắt trong trò chơi cờ vua. Nhiều thứ mà chúng ta gọi là thông minh thuộc về các heuristic được người ta sử dụng để giải quyết các vấn đề.

Hầu hết chúng ta đều có một số kinh nghiệm với những trò chơi đơn giản này, nên chúng ta cũng có khả năng nghĩ ra và kiểm nghiệm tính hiệu quả của những heuristic của chính mình. Chúng ta không cần đi tìm và hỏi ý kiến chuyên gia trong một số lĩnh vực chuyên môn sâu như là y học hay toán học (cờ vua là một ngoại lệ dễ thấy đối với quy tắc này). Vì những lý do đó, các trò chơi cung cấp một không gian mênh mông cho việc nghiên cứu các tìm kiếm heuristic. Các chương trình chơi trò chơi, trái ngược với tính đơn giản của chúng, đưa ra những thử thách riêng của chúng, bao gồm các đấu thủ mà các nước đi của anh ta có thể không dự đoán trước được một cách chắc chắn. Sự có mặt này của đấu thủ càng làm phức tạp hơn mô hình chương trình do sự thêm vào một yếu tố không dự đoán trước được và sự cần thiết phải tính đến những yếu tố tâm lý cũng như là chiến thuật trong chiến lược của trò chơi.

Suy luận và chứng minh định lý tự động

Chúng ta có thể cho rằng chứng minh định lý tự động là một nhánh nghiên cứu có từ lâu đời nhất của Trí tuệ nhân tạo khi tìm lại nguồn gốc của nó qua các tác phẩm “Nhà lý luận logic (logic theorist)” (Newell và Simon 1963a) và “Công cụ giải quyết vấn đề tổng quát (General problem solver)” (Newell và Simon 1965b) của Newell và Simon, cho đến trong những nổ lực của Rusell và Whitehead xem toàn bộ toán học như là sự dẫn xuất hình thức thuần tuý của các định lý từ các tiên đề cơ sở. Trong bất cứ trường hợp nào, nó chắc chắn vẫn là một trong những ngành phong phú nhất của lĩnh vực này. Nghiên cứu chứng minh định lý đã đạt được nhiều thành tích trong thời kỳ đầu của việc hình thức hoá các giải thuật tìm kiếm và phát triển các ngôn ngữ biểu diễn hình thức như phép tính vị từ.

Hầu hết sự quyến rũ của chứng minh định lý tự động đều là không đáng tin cậy và không đúng với nguyên tắc chung của logic. Vì là một hệ hình thức, logic tự bổ sung cho mình sự tự động hoá. Người ta có thể khảo sát một số lượng lớn những bài toán khác nhau, bằng cách biểu diễn mô tả của bài toán và những thông tin cơ sở liên quan như là tiên đề logic, và xem những trường hợp bài toán là những định lý cần phải chứng minh. Sự hiểu biết thấu đáo này là cơ sở cho việc nghiên cứu chứng minh định lý tự động và các hệ suy luận toán học.

Một lý do khác cho việc tiếp tục quan tâm đến các máy chứng minh định lý tự động là sự nhận thức rằng một hệ thống kiểu như vậy không nhất thiết phải có khả năng giải quyết những bài toán cực kỳ phức tạp một cách độc lập mà không có sự trợ giúp nào của con người. Nhiều máy chứng minh định lý hiện đại hoạt động như những trợ lý viên thông minh khi chúng cho phép con người thực hiện những công tác đòi hỏi trình độ cao hơn là phân tích một bài toán lớn thành nhiều bài toán con và đặt ra những heuristic để tìm kiếm trong không gian những chứng minh có thể chọn. Máy chứng minh định lý sau đó thực hiện công tác đơn giản hơn nhưng cũng quan trọng là chứng minh các bổ đề, kiểm chứng những giải quyết nhỏ hơn, và hoàn thành những khía cạnh hình thức của một chứng minh đã được phác thảo bởi sự hợp tác của nó với con người (Boyer và More 1979).

Các hệ chuyên gia

Kể từ lúc khoa học giải quyết vấn đề được nghiên cứu, người ta đã sớm ý thức một cách sâu sắc và cơ bản về tầm quan trọng của tri thức chuyên ngành. Lấy ví dụ một bác sĩ chẳng hạn, cô ta không thể chẩn đoán bệnh tốt chỉ nhờ vào một số kỹ năng giải quyết vấn đề tổng quát bẩm sinh; mà cô ta đã chẩn đoán tốt là vì cô ta có nhiều kiến thức y học. Tương tự như thế, một nhà địa chất giỏi phát hiện các mỏ khoáng vì anh ta biết áp d̖ 9;ng một cách hiệu quả nhiều tri thức lý thuyết và thực nghiệm về địa lý vào bài toán đang nằm trong tay anh ta. Tri thức chuyên gia về lĩnh vực là sự kết hợp giữa kiến thức lý thuyết về vấn đề đó và một tập hợp các quy tắc giải quyết vấn đề theo kiểu heuristic mà kinh nghiệm khi sử dụng những quy tắc này đã tỏ ra hiệu quả trong lĩnh vực đó. Các hệ chuyên gia được người ta xây dựng bằng cách thu thập các kiến thức từ chuyên gia người và mã hoá nó thành dạng thức mà máy tính có thể áp dụng cho những bài toán tương tự.

Sự tin cậy vào tri thức của chuyên gia chuyên ngành trong các chiến lược giải quyết vấn đề của hệ là một đặc trưng chính của các hệ chuyên gia. Người ta đã viết ra một số chương trình mà ở đó người thiết kế cũng là nguồn tri thức chuyên ngành, nhưng sẽ điển hình hơn nhiều nếu chúng ta xem xét những chương trình được phát sinh từ sự cộng tác giữa một chuyên gia chuyên ngành chẳng hạn như một bác sĩ, một nhà hoá học, một nhà địa chất học hay một kỹ sư, với một chuyên gia riêng về trí tuệ nhân tạo. Chuyên gia chuyên ngành cung cấp kiến thức cần thiết về chuyên ngành thông qua những cuộc thảo luận tổng quát về các phương pháp giải quyết vấn đề của anh ta, và bằng cách biểu diễn những kỹ năng đó trên một tập hợp các bài toán mẫu được chọn lựa cẩn thận. Chuyên gia TTNT, hay còn gọi là kỹ sư tri thức (knowledge engineer), như người ta vẫn thường gọi là các nhà thiết kế hệ chuyên gia, có trách nhiệm thể hiện tri thức này vào một chương trình mà chương trình đó phải vừa hiệu quả vừa có vẻ thông minh trong các hành vi của nó. Một chương trình như thế vừa hoàn thành xong, cần phải tinh chế kiến thức chuyên môn của nó thông qua một quá trình cung cấp cho nó những bài toán mẫu để giải, để cho chuyên gia chuyên ngành phê bình hành vi của nó và thực hiện bất cứ thay đổi hay cải biến nào cần thiết đối với tri thức của chương trình. Quá trình này lặp đi lặp lại cho đến khi chương trình đạt được mức độ hoàn thiện mong muốn.

Một trong các hệ chuyên gia sớm nhất khai thác tri thức chuyên ngành để giải quyết vấn đề là DENDRAL được phát triển tại Stanford vào cuối những năm 1960 (Lindsay et al.1980). DENDRAL được thiết kế để phỏng đoán cấu trúc của các phân tử hữu cơ từ công thức hoá học của chúng và các thông tin về khối quang phổ có liên quan đến các liên kết hoá học có mặt trong các phân tử. Vì các phân tử hữu cơ thường rất lớn, nên số lượng cấu trúc có khả năng tồn tại đối với những phân tử này thường là khổng lồ. DENDRAL chú ý vào bài toán của không gian tìm kiếm rộng lớn này bằng cách áp dụng tri thức heuristic của các chuyên gia hoá học vào bài toán làm sáng tỏ cấu trúc. Các phương pháp của DENDRAL đã tỏ ra có một sức mạnh đáng kể. Khi thường xuyên tìm thấy cấu trúc đúng trong hàng triệu khả năng khác nhau chỉ sau có vài phép thử. Phương pháp này tỏ ra thành công đến mức người ta đã sử dụng những phiên bản của hệ chuyên gia nói trên trong các phòng thí nghiệm hoá học khắp nơi trên thế giới.

Trong khi DENDRAL là một trong số những chương trình đầu tiên sử dụng tri thức chuyên ngành một cách hiệu quả để đạt được khả năng giải quyết vấn đề cấp chuyên gia, thì MYCIN là hệ chuyên gia đã thiết lập nên phương pháp luận cho các hệ chuyên gia hiện đại (contemporary expert systems) (Buchanan and Shortliff 1984). MYCIN sử dụng tri thức y khoa chuyên gia để chẩn đoán và kê đơn điều trị cho bệnh viêm màng não tuỷ sống và những trường hợp nhiễm trùng vi khuẩn trong máu.

MYCIN, được các nhà nghiên cứu phát triển ở Stanford vào giữa những năm 1970, là một trong những chương trình đầu tiên chú ý đến những bài toán suy luận bằng thông tin không chắc chắn hoặc không đầy đủ. MYCIN cung cấp những giải quyết rõ ràng và logic về quá trình suy luận của nó, sử dụng một cấu trúc kiểm tra thích hợp với lĩnh vực chuy&# 234;n môn của vấn đề, và nhận biết đặc tính để đánh giá một cách tin cậy hoạt động của nó. Nhiều kỹ thuật xây dựng hệ chuyên gia đang dùng hiện nay đã được người ta phát triển lần đầu trong dự án MYCIN.

Những hệ chuyên gia cổ điển khác bao gồm chương trình PROSPECTOR dùng để tìm ra những nơi có chứa quặng mỏ và xác định loại quặng mỏ, dựa trên thông tin địa lý về một địa điểm nào đó (duda et al. 1979a, 1979b), chương trình INTERNIST dùng để chẩn đoán trong lĩnh vực nội khoa, Dipmeter Advisor dùng để phiên dịch các kết quả của các máy khoan giếng dầu (Smith and Baker 1983) và XCON dùng để định hình các máy tính hệ VAX.XCON được sử dụng từ năm 1981, tất cả các máy VAX và Digital Equipment Corporation bán thời bấy giờ đều được định hình bằng XCON. Vô số những hệ chuyên gia khác ngày nay đang giải quyết những bài toán trong nhiều lĩnh vực khác nhau như y học, giáo dục, kinh doanh, thiết kế và khoa học (Waterman 1986). Một điều thú vị mà chúng ta có thể nhận thấy là hầu hết các hệ chuyên gia được viết cho những lĩnh vực khá chuyên biệt và ở cấp độ chuyên gia. Nói chung những lĩnh vực này đều được nghiên cứu kỹ và chúng có những chiến lược giải quyết vấn đề đã xác định một cách rõ ràng.

Mặc dù còn tồn tại những hạn chế này các hệ chuyên gia vẫn đang chứng minh giá trị của chúng trong nhiều ứng dụng quan trọng.

Câu hỏi :

Nêu thêm một số ưu điểm của hệ chuyên gia trên các phương diện tri thức, xã hội hoặc tài chính ?

Hiểu và mô hình hoá ngữ nghĩa ngôn ngữ tự nhiên

Một trong những mục tiêu có từ lâu đời của Trí tuệ nhân tạo là tạo ra các chương trình có khả năng hiểu ngôn ngữ của con người. Khả năng hiểu ngôn ngữ tự nhiên không chỉ là một trong những biểu hiện căn bản nhất của trí thông minh con người mà sự tự động hoá nó một cách thành công sẽ gây ra một tác động ngoài sức tưởng tượng đối với năng lục và hiệu quả chính của những chiếc máy tính. Người ta đã bỏ ra nhiều công sức để viết các chương trình có khả năng hiểu ngôn ngữ tự nhiên. Tuy những chương trình này đã có được một số thành công trong những ngữ cảnh hạn chế, nhưng các hệ thống có khả năng sử dụng ngôn ngữ tự nhiên một cách linh hoạt và tổng quát theo cách như con người vẫn còn ở ngoài tầm tay những phương pháp luận hiện nay.

Hiểu ngôn ngữ tự nhiên liên quan đến nhiều thứ hơn nhiều so với chỉ phân tích các câu thành các phần riêng rẽ những nhóm câu của chúng và tìm những từ đó trong từ điển. Khả năng hiểu thực sự tuỳ thuộc vào kiến thức nền tảng rộng lớn về lĩnh vực của bài văn và những thành ngữ dùng trong lĩnh vực đó, cũng như là khả năng ứng dụng những kiến thức tổng quát tuỳ thuộc theo ngữ cảnh để giải quyết những trường hợp bỏ sót hay tối nghĩa, là một đặc điểm bình thường trong lối nói con người.

Ví dụ như chúng ta thử xem xét những khó khăn khi tiến hành một cuộc hội thoại về bóng chày với một người biết tiếng Anh nhưng không biết gì về luật chơi, các đấu thủ, hoặc lịch sử của môn chơi. Liệu người này có thể hiểu được hay không nghĩa của câu: “With none down in the top of the nith anh the go-ahead run at second, the managercalled this relief from the bull pen ?” Tuy từng từ riêng lẻ trong câu này là có thể hiểu được, nhưng câu này vẫn được coi là sai ngữ pháp ngay cả đối với người thông minh nhất trong số những người không am hiểu bóng chày.

Công việc tập hợp và tổ chức kiến thức nền tảng này được tiến hành theo cách mà sao cho cách ấy có thể áp dụng được cho sự lĩnh hội ngôn ngữ, đã hình thành nên vấn đề chủ yếu của việc tự động hoá quá trình hiểu ngôn ngữ tự nhiên. Để đáp ứng yêu cầu này, các nhà nghiên cứu đã phát triển nhiều kỹ thuật dùng để cấu trúc hoá ý nghĩa ngữ nghĩa, các kỹ thuật này được dùng xuyên suốt khoa học Trí tuệ nhân tạo.

Do việc hiểu ngôn ngữ tự nhiên đòi hỏi những khối lượng kiến thức khổng lồ, hầu hết các công trình được người ta thực hiện trong những lĩnh vực vấn đề đã được hiểu rõ và chuyên môn hoá. Một trong những chương trình khai thác sớm nhất phương pháp luận “thế giới qui mô” này là SHRDLU của Winograd, một hệ ngôn ngữ tự nhiên có khả năng “trò chuyện” về hình dáng đơn giản của các khối có nhiều hình dạng và màu sắc khác nhau (winograd 1973). SHRDLU có thể trả lời được những câu hỏi kiểu như “khối màu gì đang nằm trên hình lập phương màu xanh da trời ?” và dự kiến những hành động kiểu như “di chuyển hình chóp màu đỏ lên viên gạch màu xanh lá cây”. Những bài toán loại này, liên quan đến việc mô tả và thao tác những sắp xếp đơn giản của các khối đã xuất hiện và thường xuyên gây ngạc nhiên trong giới nghiên cứu TTNT và được người ta biết đến dưới cái tên là những bài toán “thế giới của khối”.

Mặc cho SHRDLU thành công với việc trò chuyện về sự sắp xếp của các khối, nhưng phương pháp của nó đã không đủ khái quát được để vượt ra khỏi thế giới các khối. Những kỹ thuật biểu diễn được sử dụng trong chương trình này quá đơn giản nên không đủ để tổ chức nắm bắt ngữ nghĩa của nhiều lĩnh vực phong phú và phức tạp hơn một cách có kết quả. Nhiều sự đầu tư nghiên cứu về hiểu ngôn ngữ tự nhiên trong thời gian gần đây được người ta dành hết cho việc tìm ra những hình thức biểu diễn, mà về cơ bản đủ dùng trong một phạm vi rộng lớn các ứng dụng mà những ứng dụng này tự bản thân chúng còn chưa thích nghi tốt với cấu trúc đặc thù của lĩnh vực đó. Người ta khảo sát một số lượng những kỹ thuật khác nhau (hầu hết đều là những mở rộng hay cải tiến của kỹ thuật mạng ngữ nghĩa) cho mục đích này và dùng chúng vào việc phát triển những chương trình có khả năng hiểu ngôn ngữ tự nhiên trong những lĩnh vực tri thức cấp bách nhưng lý thú. Sau cùng, trong nghiên cứu gần đây (grosz 1997, marcus 1980), các mô hình và cách tiếp cận stochastic, mô tả cách các tập hợp từ “cùng xuất hiện” trong các môi trường ngôn ngữ, đã được dùng để khắc hoạ nội dung ngữ nghĩa của câu. Tuy nhiên, hiểu ngôn ngữ tự nhiên một cách tổng quát là vấn đề vẫn còn vượt quá giới hạn hiện nay của chúng ta.

Câu hỏi :

Trình bày một số ứng dụng cụ thể mà bạn biết cho việc xử lý ngôn ngữ tự nhiên đang áp dụng vào các lĩnh vực cuộc sống hiện nay ?

Mô hình hoá hoạt động của con người

Mặc dù khá nhiều vấn đề đã nói ở trên dùng trí tuệ con người làm điểm tựa tham khảo để xem xét trí tuệ nhân tạo, thực tế đã không diễn biến theo cách mà những chương trình cần phải lấy sự tổ chức của trí óc con người làm kiểu mẫu cho chúng. Thực ra nhiều chương trình TTNT được thiết kế để giải một số bài toán cần thiết mà không cần chú ý đến tính tương tự của chúng so với kiến trúc trí óc con người. Ngay cả các hệ chuyên gia, trong khi nhận được nhiều tri thức từ các chuyên gia con người, cũng không thực sự cố gắng bắt chước những quá trình trí tuệ bên trong của con người. Nếu như sự hoạt động chỉ là những đặc tính mà theo đó một hệ thống sẽ được đánh giá, thì có thể là không có mấy lý do để mô phỏng các phương pháp giải quyết vấn đề của con người. Trong thực tế, những chương trình sử dụng các phương pháp không theo kiểu con người để giải quyết các bài toán thường thành công hơn những chương trình theo kiểu con người. Tuy nhiên, mô hình của những hệ thống rõ ràng bắt chước một số khía cạnh của cách giải quyết vấn đề theo kiểu con người vẫn là một mảnh đất màu mỡ trong nghiên cứu cho cả hai ngành khoa học trí tuệ nhân tạo và tâm lý học.

Mô hình hóa hoạt động con người, ngoài việc cung cấp cho TTNT nhiều phương pháp luận cơ bản, đã chứng tỏ được rằng nó là một dụng cụ mạnh để công thức hóa và thử nghiệm những lý thuyết về sự nhận thức của con người. Những phương pháp luận giải quyết vấn đề được các nhà khoa học máy tính phát triển đã đem đến cho các nhà tâm lý học một sự ẩn dụ mới để khảo sát trí tuệ con người. Hơn cả việc mở rộng được các lý thuyết về sự nhận thức trong thứ ngôn ngữ không rõ ràng sử dụng vào đầu thời kỳ nghiên cứu hay là từ bỏ được bài toán mô tả toàn bộ những hoạt động bên trong của trí óc con người (như đề nghị của các nhà hành vi học), nhiều nhà tâm lý học đã đưa ngôn ngữ và lý thuyết khoa học máy tính vào để công thức hóa các mô hình trí tuệ con người. Những kỹ thuật này không chỉ cung cấp một vốn từ vựng cho việc mô tả trí tuệ con người mà sự thể hiện trên máy tính những lý thuyết này đã tạo cho các nhà tâm lý học một cơ hội để thử nghiệm, phê bình và cải tiến một cách thực nghiệm những ý tưởng của họ (luger 1994).

Lập kế hoạch và robotics

Lập kế hoạch (planning) là một khía cạnh quan trọng trong những cố gắng nhằm chế tạo ra các robot có thể thực hiện được nhiệm vụ của chúng với một trình độ nhất định và khả năng linh hoạt và phản ứng với thế giới bên ngoài. Nói một cách khác ngắn gọn, việc lập kế hoạch giả định rằng robot có khả năng thực hiện những hành động sơ cấp (atomic action) nhất định. Nó cố gắng tìm ra một chuỗi các hành động cho phép hoàn thành một công tác ở cấp độ cao hơn, chẳng hạn như đi qua một căn phòng chứa đầy những chướng ngại vật.

Có nhiều những lý do khiến cho việc lập kế hoạch trở thành một bài toán khó khăn, ngoài lý do không đáng kể nhất là kích thước quá lớn của không gian những chuỗi bước đi có thể tồn tại. Ngay cả một máy tính cực kỳ đơn giản cũng có khả năng tạo ra một số lượng khổng lồ những chuỗi bước đi có thể. Ví dụ, chúng ta hãy tưởng tượng rằng, một robot có khả năng di chuyển về phía trước, phía sau, bên phải, bên trái và cần xem xét có bao nhiêu cách khác nhau mà robot đó có thể dùng để di chuyển quanh căn phòng đó và robot phải lựa chọn một đường đi quanh chúng theo một phương pháp nào đó có hiệu quả. Viết một chương trình có khả năng tìm ra đường đi tốt nhất một cách thông minh với điều kiện như vậy, mà không bị chôn vùi bởi khối lượng khổng lồ các khả năng dự kiến, đòi hỏi phải có những kỹ thuật phức tạp để biểu diễn tri thức về không gian và kiểm soát việc tìm kiếm trong môi trường cho phép.

Một phương pháp mà con người vẫn áp dụng để lập kế hoạch là phân rã vấn đề từng bước (hierarchical problem decoposition). Nếu bạn đang lập kế hoạch cho chuyến du lịch đến Luân Đôn, thì nói chung những vấn đề như sắp xếp chuyến bay, đến sân bay, liên hệ với hãng hàng không, vận chuyển đường bộ tại Luân Đôn sẽ được bạn xem xét một cách riêng lẻ, cho dù tất cả chúng đều là bộ phận của một kế hoạch toàn thể lớn hơn. Từng vấn đề này có thể được tiếp tục phân rã thành những vấn đề con (subproblem) nhỏ hơn như tìm một bản đồ thành phố, xem xét hệ thống giao thông, và tìm một nơi ăn ở phù hợp điều kiện về tài chính. Cách làm này không những làm giảm bớt một cách hiệu quả không gian tìm kiếm mà nó còn cho phép chúng ta tiết kiệm được những kế hoạch con có thể dùng trong tương lai.

Trong khi con người lập kế hoạch một cách chẳng mấy khó khăn, thì việc tạo ra một chương trình máy tính có thể làm được công việc như vậy là một thách thức ghê gớm. Một công tác có vẻ đơn giản là phá vỡ một vấn đề lớn thành nhiều vấn đề con liên quan thực sự cần đến những heuristic phức tạp và kiến thức bao quát về lĩnh vực đang lập kế hoạch. Quyết định xem cần giữ lại những kế hoạch con nào và tổng quát hóa chúng như thế nào cho sự sử dụng trong tương lai là một vấn đề phức tạp tương đương.

Một robot thực hiện một dãy các hành động một cách mù quáng mà không biết phản ứng lại với những thay đổi trong môi trường của nó hoặc không có khả năng phát hiện và sửa chữa trong chính kế hoạch của nó khó có thể được người ta coi là thông minh. Thông thường, một robot sẽ phải làm thành công thức một kế hoạch dựa trên thông tin không đầy đủ và sửa chữa hành vi của nó khi thi hành kế hoạch. Robot có thể không có những giác quan thích hợp để định vị tất cả những chướng ngại vật trên con đường đi đã vạch ra. Một robot như vậy phải bắt đầu di chuyển qua căn phòng dựa vào những gì mà nó “nhận thức” được và điều chỉnh đường đi của nó khi phát hiện ra những chướng ngại vật khác. Thiết lập cho các kế hoạch cho phép có thể phản ứng lại với những điều kiện của môi trường là một nhiệm vụ chủ yếu khác trong lập kế hoạch.

Nói chung, thiết kế robot là một trong những lĩnh vực nghiên cứu của TTNT đã mang lại nhiều hiểu biết sâu sắc hỗ trợ cho phương pháp giải quyết vấn đề theo kiểu hướng thành viên (agent - oriented). Bị thất bại bởi những phức tạp trong việc bảo đảm độ lớn của không gian biểu diễn cũng như bởi mô hình của các thuật toán tìm kiếm dùng cho việc lập kế hoạch theo kiểu truyền thống, các ngành nghiên cứu, gồm cả agre và chapman (1987) và brooks (1991a), đã phát biểu lại vấn đề lớn hơn này dựa trên các thuật ngữ về sự tương tác lẫn nhau giữa nhiều thành viên (agent) theo kiểu bán tự quản. Mỗi thành viên chịu trách nhiệm về phần đóng góp của chính nó trong nhiệm vụ của bài toán và thông qua sự phối hợp giữa chúng lời giải tổng quát sẽ hiện ra.

Các ngôn ngữ và môi trường dùng cho TTNT

Nghiên cứu Trí tuệ nhân tạo đã tạo ra một số những sản phẩm phụ, đó là những tiến bộ trong các ngôn ngữ lập trình và các môi trường phát triển phần mềm. Vì nhiều lý do, bao gồm cả qui mô tổng thể của hầu hết các chương trình TTNT, khuynh hướng phát sinh ra các không gian khổng lồ của các thuật toán tìm kiếm, và những khó khăn trong việc tiên đoán các hành vi của các chương trình điều khiển bằng heuristics, các nhà lập trình TTNT đã bị thúc ép phải xây dựng nên một tập hợp các phương pháp lập trình.

Các môi trường lập trình bao gồm cả các kỹ thuật cấu tạo tri thức (knowledge – structuring) như lập trình hướng đối tượng (object-oriented programming) và các cơ cấu tổ chức hệ chuyên gia. Các ngôn ngữ cấp cao như Lisp và Prolog, là các ngôn ngữ tích cực hỗ trợ kiểu phát triển theo module, khiến cho việc quản lý tính đồ sộ và phức tạp của chương trình dễ dàng hơn. Các gói chương trình lần tìm cho phép người lập trình tạo dựng lại quá trình thực thi của một thuật toán phức tạp và cho phép tháo gỡ những phức tạp khi tìm kiếm bằng điều khiển của heuristics. Không có công cụ kỹ thuật đó, khó mà tin được rằng người ta có thể xây dựng nên những hệ thống TTNT gây chú ý như vậy.

Kỹ thuật này hiện nay là những công cụ chuẩn dùng cho công nghệ phần mềm, và tương đối có quan hệ với hạt nhân lý thuyết của TTNT. Những kỹ thuật khác như là lập trình hướng đối tượng, được quan tâm đáng kể cả trên lý thuyết và thực tiễn. Các ngôn ngữ phát triển cho việc lập trình trí tuệ nhân tạo gắn bó mật thiết với cấu trúc lý thuyết của lĩnh vực đó.

Máy học

Tuy thành công trong vai trò những máy giải quyết vấn đề, học vẫn còn là một sự nan giải đối với các chương trình TTNT. Khuyết điểm này dường như rất nghiêm trọng, đặc biệt là khi khả năng học là một trong những thành phần quan trọng nhất làm nên hành vi thông minh. Một hệ chuyên gia có thể thực hiện những tính toán lớn và rất tốn kém nhằm giải quyết một bài toán. Tuy thế không giống như con người, nếu đưa cho nó cùng bài toán ấy hoặc một bài toán tương tự lần thứ hai, nó sẽ không nhớ lời giải lần trước. Nó thực hiện lại chuỗi tính toán đó lần nữa. Điều này đúng cho cả lần thứ hai, thứ ba, thứ tư, và bất cứ khi nào nó giải quyết bài toán đó – hầu như không thể gọi đó là hành vi của một máy giải quyết vấn đề thông minh.

Hầu hết các hệ chuyên gia đều bị cản trở bởi tính cứng nhắc trong các chiến lược giải quyết vấn đề của chúng và sự khó khăn khi phải thay đổi khối lượng lớn mã chương trình. Giải pháp dễ thấy đối với những khó khăn này là hoặc để cho các chương trình học tập trên chính kinh nghiệm, sự tương tự, và những ví dụ của chúng, hoặc là “nói” cho chúng biết phải làm gì.

Tuy rằng học là một lĩnh vực khó khăn trong nghiên cứu, một vài chương trình được viết đã đề xuất rằng đây không phải là một mục tiêu không thể đạt được. Có thể một chương trình như thế gây chú ý nhất là AM - Automated Mathematician - được thiết kế để khám phá các quy luật toán học (lenat 1977, 1982). Ban đầu người ta đưa cho AM các khái niệm và tiên đề của lý thuyết tập hợp, sau đó nó đã tìm ra những khái niệm toán học quan trọng như là lực lượng (cardinality) và số học số nguyên, và nhiều kết quả khác của lý thuyết số. AM đã phỏng đoán các lý thuyết mới bằng cách cập nhật cơ sở tri thức hiện hành của nó, và sử dụng các heuristic để theo đuổi “khả năng đáng quan tâm” nhất trong hàng loạt các lựa chọn có thể.

Một nghiên cứu khác có ảnh hưởng tới dư luận của winston về sự quy nạp các khái niệm cấu trúc, chẳng hạn như “hình cung” từ một tập hợp các ví dụ trong trò chơi thế giới của khối (winston 1975a). Thuật toán ID3 đã tỏ ra thành công trong việc học các mẫu tổng quát từ các ví dụ (quinlan 1986a). Menta-dendral học các luật để phiên dịch dữ liệu quang phổ khối trong hóa học hữu cơ từ các mẫu dữ liệu về các hợp chất của cấu trúc đã biết. Teiresias, một đại diện khá thông minh của các hệ chuyên gia có thể chuyển đổi lời chỉ đạo cấp cao thành các luật mới cho cơ sở dữ liệu của nó (davis 1982). Hacke nghĩ ra các kế hoạch để thực hiện các thao tác trong trò thế giới các khối thông qua một quá trình lặp lại nhiều lần việc đặt ra một kế hoạch, thử nghiệm nó, và hiệu chỉnh bất cứ lỗ hỏng nào phát hiện ra trong kế hoạch dự tuyển (sussman 1975). Những nghiên cứu trong việc học trên cơ sở giải thích đã cho thấy tính hiệu quả của tri thức ưu tiên trong quá trình học (mitchell et al. 1986, dejong and mooney 1986).

Sự thành công của các chương trình học máy thuyết phục rằng có thể tồn tại một tập hợp các nguyên tắc học tổng quát cho phép xây dựng nên các chương trình có khả năng học tập trong nhiều lĩnh vực thực tế.

Xử lý phân tán song song và tính toán kiểu nảy sinh

Hầu hết các kỹ thuật nói đến trong tài liệu này đều sử dụng tri thức được biểu diễn rõ ràng và các thuật toán tìm kiếm được thiết kế một cách cẩn thận để cài đặt trí tuệ. Một cách tiếp cận rất khác là tìm cách xây dựng các chương trình thông minh bằng cách sử dụng các mô hình tương tự như cấu trúc nơ-ron (neuron) của bộ não con người.

Một sơ đồ neuron đơn giản gồm có một thân tế bào có rất nhiều những chỗ nhô ra theo nhánh, gọi là các tổ chức cây (dendrite), và một nhánh đơn gọi là trục (axon). Các tổ chức cây nhận tín hiệu từ các neuron khác. Khi những xung lực kết hợp này vượt quá một ngưỡng nhất định nào đó, thì neuron phát động và một xung lực, hay còn gọi là “cụm” (spike), chạy xuống trục. Các nhánh ở cuối trục hình thành nên các khớp thần kinh (synapse) với những tổ chức cây của các neuron; các khớp thần kinh có thể thuộc loại kích thích (excitatory) hay ngăn chặn (inhibitory). Một khớp thần kinh kích thích sẽ cộng thêm vào tổng số tín hiệu đi đến neuron; còn khớp thần kinh ngăn chặn thì trừ bớt đi tổng số này.

Mô tả một neuron như vậy là quá sức đơn giản, nhưng nó thâu tóm tất cả những đặc trưng liên quan đến các mô hình tính toán neuron. Đặc biệt mỗi đơn vị tính toán tính toán một số chức năng đầu vào của nó rồi chuyển kết quả đến các đơn vị liên hệ trong mạng. Thay vì sử dụng các ký hiệu và phép toán rõ ràng, tri thức của các hệ này nảy sinh ra khỏi toàn bộ mạng các kết nối neuron và các giá trị ngưỡng.

Vì nhiều lý do, cấu trúc neuron hiện đang hết sức hấp dẫn để dùng làm cơ chế cài đặt trí tuệ. Các chương trình TTNT truyền thống có khuynh hướng dễ gãy vỡ và nhạy cảm quá đáng khi phải đương đầu với sự nhiễu loạn: thay vì giảm giá trị một cách từ từ, những chương trình như vậy thường thành công hoàn toàn hoặc thất bại hoàn toàn. Trí tuệ con người linh hoạt hơn nhiều; chúng ta có thể tiếp nhận được tốt đầu vào nhiễu loạn, chẳng hạn như nhận ra một khuôn mặt trong một căn phòng tối từ góc nhìn hẹp hay theo dõi duy nhất một cuộc đối thoại trong bữa tiệc ồn ào. Ngay cả khi không thể giải quyết được một số vấn đề, chúng ta nói chung vẫn có thể đưa ra một sự phỏng đoán có lý và coi đó như lời giải của bài toán. Do các cấu trúc neuron thâu tóm tri thức vào trong một số lượng lớn các đơn vị được nghiền thật nhỏ, nên chúng tỏ ra có triển vọng hơn trong việc đối sánh một cách toàn phần các dữ liệu nhiễu loạn và không đầy đủ.

Cấu trúc neuron cũng vững chắc hơn vì tri thức phân bố khá đồng đều xung quanh mạng. Kinh nghiệm của những người đã bị mất một phần não bộ do bệnh tật hay tai nạn đã cho thấy rằng họ không bị mất các vùng nhớ riêng biệt, mà đúng hơn là các quá trình trí não của họ phải chịu đựng nhiều sự giảm sút tổng thể.

Trí tuệ nhân tạo



Nguồn: voer.edu.vn/m/khai-quat-cac-linh-vuc-ung-dung-cua-ttnt/0022c3a8


Chưa có phản hồi
Bạn vui lòng Đăng nhập để bình luận