Trong kỹ thuật thường gặp các đường cong khác nhau. Sau đây là cách vẽ một số đường cong phẳng.
A. Vẽ ô van
Ô van là đường cong khép kín được tạo bởi bốn cung tròn từng đôi một đối xứng. Ô van có hai trục đối xứng vuông góc với nhau gọi là trục dài và trục ngắn của ô van. Khi vẽ người ta cho biết độ dài của hai trục đó.(Quan sát đoạn video hình 2.22)Ví dụ: Vẽ ô van biết trục dài AB và trục ngắn CD.Cách vẽ như sau:
– Vẽ cung tròn tâm O, bán kính OA cắt– OC kéo dài tại E; cung tròn tâm C, bán kính CE cắt AC tại F.– Vẽ trung trực của AF cắt OA tại O1, cắt OD tại O3.– Lấy O4 đối xứng với O3, O2 đối xứng với O1 qua O. Nối O3 với O1 và O2 , nối O4 với O1 và O2. Bốn tia này sẽ là giới hạn các cung tròn tâm O1, O2, O3, O4; tạo thành ô van.– Vẽ các cung tròn tâm O1, bán kính O1A; tâm O2, bán kính O2B; tâm O3 bán kính O3C; tâm O4 bán kính O4D ta được hình ô van cần dụng
a1_13Med_Prog
B. Đường xoáy ốc nhiều tâm
Đường xoắy ốc nhiều tâm là đường cong phẳng tạo bởi các cung tròn có bán kính khác nhau nối tiếp nhau.Khi vẽ người ta cho biết khoảng cách giữa các tâm.+ Vẽ đường xoáy ốc 2 tâm: (Quan sát đoạn video sau)
– Lấy O1 làm tâm, bán kính O1 – O2 vẽ cung O2– 1– Lấy O2 làm tâm, bán kính O2 – 1 vẽ cung 1–2– Lấy O1 làm tâm, bán kính O1 – 2 vẽ cung 2–3...
+ Vẽ đường xoáy ốc 3 tâm: (Quan sát đoạn video sau)
– Lấy O1 làm tâm, bán kính O1 – O3 vẽ cung O3. 1– Lấy O2 làm tâm, bán kính O2 – 1 vẽ cung 1–2– Lấy O3 làm tâm, bán kính O3.2 vẽ cung 2–3– Lấy O1 làm tâm, bán kính O1 – 3 vẽ cung 3 – 4
+ Vẽ đường xoáy ốc 4 tâm: (Quan sát đoạn video sau).
– Lấy O1 làm tâm, bán kính O1 – O2 vẽ cung O2–1– Lấy O4 làm tâm, bán kính O4 – 1 vẽ cung 1–2– Lấy O3 làm tâm bán kính O3.2 vẽ cung 2–3– Lấy O2 lâm tâm bán kính O2 – 3 vẽ cung 3 – 4...
xoaioc2tamMed_Prog
A. Elip
Elip là quỹ tích của điểm có tổng số khoảng cách đến hai điểm cố định F1 và F2 là một hằng số.
MF 1 + MF 2 = 2a
F1 và F2 gọi là tiêu điểm của elip (khoảng cách F1F2 < 2a), AB là trục dài của elip, CD là trục ngắn của elip (hình 2.26).Cách vẽ elip* Vẽ elip biết hai trục AB và CD (hình 2.27).
Giao điểm của các đường 1 –1', 2 – 2' là các điểm nối thành Eli p.
* Vẽ Elip khi biết 2 đường kính liên hợp EF và GH* Phương pháp hai chùm tia: (hình 2.28).
* Phương pháp tám điểm (hình 2. 29).
B. Parabôn
Parabôn là quỹ tích những điểm cách đều một điểm cố định và một đường thẳng cố định (hình 2.30).Ví dụ: điểm M thuộc parabôn ta có
MF = MH
Điểm cố định F gọi là tiêu điểm của parabôn, đường thẳng d cố định gọi là đường chuẩn của parabôn, đường thẳng Ox kẻ qua F vuông góc với trục d là trục của parabôn.Cách vẽ parabôn+ Vẽ parabôn khi biết tiêu điểm F và đường chuẩn.Cách vẽ hình 2.31
Trên trục đối xứng Ox lấy một điểm bất kì, ví dụ điểm 1.Quay cung tròn tâm F, bán kính r2 (bằng khoảng cách từ điểm O đến điểm1)cắt đường thẳng song song với d và đi qua 1 tại hai điểm. Hai điểm đó chính là hai điểm thuộc parabôn. Các điểm khác cũng xác định tương tự.
+ Vẽ parabôn nội tiếp trong một góc cho trước (hình 2.32).
Phương pháp vẽ parabôn này gọi là phương pháp hai hàng điểm.
C. Hypécbôn
Hypécbôn là quỹ tích các điểm có hiệu khoảng cách tới hai điểm cố định F1 và F2 bằng một hằng số.
½MF1 – MF2 ½ = A1A2 = 2a
F1 và F2 gọi là tiêu điểm của Hypécbôn, đường thẳng nối hai tiêu điểm F1 và F2 là trục hypécbôn, hai điểm A1và A2 là hai đỉnh c 911;a hypécbôn (hình 3.33).Cách vẽ hypécbôn Khi biết hai tiêu điểm F1, F2 và hai đỉnh của nó như sau:
Trên hình 2.34 ta vẽ đường tròn tâm O có đường kính F1 F2 và hình chữ nhật có 2 cạnh qua A1, A2 để xác định hai đường tiệm cận của hypécbôn.
D. Đường sin
Đường sin là đường cong có phương trình y = sinx.Cách vẽ đường sin được mô tả trong hình 2.35.
E. Đường xoáy ốc Acsimét
Đường xoáy ốc Acsimét là quỹ đạo của một điểm chuyển động đều trên một bán kính khi bán kính này quay đều quanh tâm O.Khoảng dịch chuyển của điểm trên bán kính khi bán kính này quay được 3600 gọi là bước xoáy ốc a.Khi vẽ đường xoáy ốc acsimét người ta cho biết bước xoắn a. Cách vẽ được trình bầy trong đoạn video hình 2.36.
G. Đường thân khai của đường tròn
Đường thân khai của đường tròn là quỹ đạo của một điểm thuộc đường thẳng khi đường thẳng này lăn không trượt trên một đường tròn cố định.Đường tròn cố định gọi là đường tròn cơ sở. Khi vẽ đường thân khai người ta cho biết bán kính đường tròn cơ sở.Cách vẽ đường thân khai (hình 2.37).
ta được các điểm M12 , M11 , M10 ...là các điểm thuộc đường thân khai của đường tròn tâm O bán kính R cần xác định.
H. Đường Xiclôit
Đường xiclôit là quỹ đạo của một điểm thuộc một đường tròn, khi đường tròn đó lăn không trượt trên một đường thẳng cố định.Đường tròn lăn gọi là đường tròn cơ sở, đường thẳng cố định gọi là đường thẳng định hướng. Khi vẽ người ta cho biết đường kính của đường tròn cơ sở và đường thẳng định hướng.Cách vẽ như sau (hình 2.38)
+ Từ các điểm 1', 2', 3' ... kẻ các đường thẳng vuông góc với đường thẳng định hướng để xác định các điểm O1, O2, O3...+ Lấy O1, O2, O3... làm tâm vẽ các đường tròn có bán kính bằng bán kính đường tròn cơ sở. Các đường tròn này cắt các đường thẳng song song với đường thẳng định hướng kẻ từ các điểm chia 1, 2, 3, ... tại các điểm M1, M2, M3... Các điểm này chính là các điểm thuộc Xiclôit.
K. Đường Êpixiclôit và đường Hypôxidôit
Đường êpixiclôit và đường hypôxidôit là quỹ đạo của một điểm thuộc một đường tròn khi đường tròn đó lăn không trượt trên một đường tròn cố định khác.Đường tròn lăn gọi là đường tròn cơ sở, đường tròn cố định gọi là đường tròn định hướng.Nếu hai đường tròn (cơ sở và định hướng) tiếp xúc ngoài khi lăn ta có đường êpixiclôit như hình 2.39.Khi vẽ đường êpixiclôit người ta cho bán kính r của đường tròn cơ sở, bán kính R và tâm của đường tròn định hướng. Góc được tính theo công thức:
* Nếu đường tròn cơ sở và đường tròn định hướng tiếp xúc trong với nhau ta có đường hypôxiclôit (hình 2.40).