THẾ NÀO LÀ VẬT LIỆU SIÊU DẪN?
Vật liệu siêu dẫn chính là vật liệu có tính siêu dẫn điện. Năm 1911, nhà vật lý học người Hà Lan Maonels đã phát hiện ra, ở nhiệt độ - 269oC, điện trở của thủy ngân sẽ trở về 0, ông gọi hiện tượng này là tính siêu dẫn điện. Phát hiện mới lạ này đã thu hút sự quan tâm chú ý của giới khoa học kỹ thuật thế giới. Con người hy vọng có thể dùng vật liệu siêu dẫn để sao chế thành thể từ mạnh, và dùng thể từ siêu dẫn này vào việc nghiên cứu và các lĩnh vực của kỹ thuật sản xuất.
Thế nhưng, các loại vật liệu siêu dẫn kim loại sớm được sử dụng như chì, thiếc, dòng điện giới hạn và từ trường giới hạn rất nhỏ. Khi thêm dòng điện mạnh, vật liệu sẽ mất đi tính siêu dẫn. Cho đến những năm 30 của thế kỷ 20, các nhà khoa học đã phát hiện ra, sau khi cho một nguyên tố khác vào kim loại thuần khiết và hình thành hợp kim, dòng điện giới hạn và từ trường giới hạn của nó liền được nâng cao. Ví dụ loại hợp kim từ chì bitmut được tạo ra từ năm 1930, từ trường giới hạn của nó đạt tới 2 tecla.
Các nhà khoa học Liên Xô cũ đã có những đóng góp to lớn đối với việc nghiên cứu vật liệu hợp kim siêu dẫn. Họ đã đặt tên cho loại vật liệu siêu dẫn có giá trị thực tiễn này là thể siêu dẫn loại 2, trong đó bao gồm hợp kim siêu dẫn, ví dụ như hợp kim niobi - ziriconi, hợp kim vanadi - galium, vật chất hóa học oxyt kim loại như kết cấu A15, các kim loại hiếm, như niobi vanadi và techneti... Dùng loại vật liệu siêu dẫn này cuốn thành thế từ mạnh, do không có điện trở nên có ưu điểm là tiết kiệm điện, không mất nhiệt, thể tích nhỏ và công suất lớn. Vào đầu những năm 60 của thế kỷ 20, các nhà khoa học đã nghiên cứu chế tạo thành công thể từ trường siêu dẫn với số lượng từ trường đạt tới 10 tecla, và được sử dụng rộng rãi trong máy phát điện từ lưu phòng bột khí, máy gia tốc tuần hoàn, công chấn từ nguyên tử và các máy móc cỡ to thuyền nổi từ trường. Thế nhưng, thể từ siêu dẫn thì chỉ ở điều kiện nhiệt độ thấp mới có thể hoạt động được, và nếu như tạo ra được loại công nghệ phức tạp là môi trường nhiệt độ thấp như thế này, nguồn nguyên liệu tiêu hao cũng rất lớn. Do đó, kỹ thuật siêu dẫn vẫn luôn trong giai đoạn thử nghiệm, khó ứng dụng và mở rộng.
Năm 1957, lý luận BCS giải thích tính dẫn điện đã được thiết lập. Lý luận BCS cho rằng nguyên nhân sản sinh ra tính dẫn điện là vì trong điều kiện nhiệt độ thấp cực ngắn, điện tử tự do trong thể dẫn có thể kết hợp thành đôi chặt chẽ. Khi các điện tử lớn số lượng đông định hướng hoạt động tập thể, cách tinh trong thể dẫn khó dừng, từ đó hình thành dòng điện lưu siêu dẫn không vật cản. Lý luận BCS còn quả quyết cho rằng, nhiệt độ sản xuất tính siêu dẫn không thể vượt qua - 243oC, điều này đã phủ bóng đen lên việc nghiên cứu vật liệu siêu dẫn.
Năm 1986, hai nhà khoa học Muler và Bainos ở phòng nghiên cứu Thụy Sĩ của công ty IBM của Mỹ đã phát hiện ra oxit các kim loại đồng bari lantan, có thể thực hiện tính siêu dẫn dưới nhiệt độ tương đối cao, đã phá vỡ vùng cấm của lý luận BCS, từ đó đã nhen lên ngọn lửa hy vọng mới cho viễn cảnh ứng dụng của vật liệu siêu dẫn. Hơn nữa, yêu cầu điều kiện thực nghiệm nghiên cứu chế tạo vật liệu siêu dẫn rất thấp và cũng dễ thực hiện, do vậy rất nhanh chóng dấy lên phong trào nghiên cứu siêu dẫn trên phạm vi toàn cầu. Rất nhiều nhà khoa học của nhiều quốc gia để tham gia cạnh tranh nâng cao nhiệt độ giới hạn của vật liệu siêu dẫn vật oxy hóa, nhà khoa học người Hoa quốc tịch Mỹ Chu Kinh Vũ và nhà khoa học Trung Quốc Triệu Trung Kiên đã thu được những thành công làm thế giới phải kinh ngạc trong lĩnh vực này. Để phân biệt với vật liệu siêu đẫn ở nhiệt độ thấp truyền thống, các nhà khoa học đã đặt cho vật liệu siêu đẫn oxyt một cái tên là vật liệu siêu dẫn nhiệt độ cao.
Hiện nay, các vật liệu siêu dẫn ở nhiệt độ cao được tạo thành như oxyt đồng barium lantan, oxyt đồng, ytri barium, đã được gia công thành dạng sợi và dạng màng mỏng, làm máy truyền cảm, thiết bị điện tử và linh kiện máy vi sóng vô nguồn.