THỦY ĐỘNG LỰC HỌC CỦA EULER VÀ NAVIER - STOCKES
Phương trình Bernoulli cho phép giải thích rất nhiều hiện tượng thủy động lực học lý thú nhưng còn rất nhiều hiện tượng diễn ra trong các chất lỏng và chất khí chuyển động không thể nào giải thích được chỉ bằng phương trình này. Dùng phương trình này có thể đi đến những kết quả nghịch lý không thể có trong thiên nhiên. Nói riêng, ta được kết quả là khi chất lỏng chảy trong ống có tiết diện không đổi thì áp suất không tụt xuống và chất lỏng vẫn chảy mà không hề chịu một sức cản nào. Cả các vật chuyển động thẳng và đều cũng không chịu một lực cản nào. Người ta gọi hiện tượng này là nghịch lý D'Alembert- Euler vì nó đã được phát hiện bởi nhà bác học Pháp Jean Le Rond D’Alembelt năm l744 và viện sĩ hàn lâm Petersburg Leonhard Euler năm 1745. Các chất lỏng có các tính chất lạ lùng như thế không có trong tự nhiên bởi vậy người ta gọi chất lỏng lý thuyết như thế là chất lỏng lý tưởng. Ở thế kỷ XIX đã hình thành tình huống báo hiệu sự ra đời của một khoa học mới: các nhà thực nghiệm đã quan sát và ghi đo được các hiện tượng thủy động lực học không giải thích được còn các nhà lý thuyết dựa trên các quan niệm về chất lỏng lý tưởng lại tìm được những kết quả rất không phù hợp với thực tế.
Khi đưa ra phương trình vi phân cho chuyển động của chất lỏng lý tưởng. Leonhard Euler đã giả thiết rằng các lực tác dụng lên một mặt bất kỳ trong nó cũng như trong một chất lỏng đứng yên tỷ lệ với chính bề mặt này. Giả thiết này đã làm đơn giản đáng kể phương trình chuyển động cho phép tìm được các lời giải của nó và mô tả được chuyển động của chất lỏng bằng giải tích toán học. Đôi khi những sự đơn giản hóa tương tự là có cơ sở (biện minh được), đôi khi lại không, vậy cho nên ta phải biết khi nào và tại sao thủy động lực học của Euler tức lý thuyết về chất lỏng lý tưởng, không còn hiệu lực nữa.
Chất lỏng thực khác với chất lỏng lý tưởng ở chỗ nó có ma sát nội hay là độ nhớt. Hai phần tử chất lỏng tiếp giáp nhau chuyển động theo cùng một hướng với các vận tốc khác nhau sẽ tương tác với nhau. Lực tương tác làm tăng tốc phần tử chất lỏng chuyển động chậm và làm giảm vận tốc phần tử chuyển động nhanh hơn. Neon đã giả định rằng giá trị của lực này (gọi là lực ma sát nội) tỉ lệ với hiệu vận tốc của các phần tử chất lỏng. Đương nhiên trong môi trường liên tục chẳng có phần tử riêng rẽ nào cả và người ta dùng khái niệm này để tăng tính trực quan, còn vận tốc chất lỏng được phân bố liên tục. Do đó lực ma sát nội F tỷ lệ với mức thay đổi vận tốc chất lỏng v theo phương vuông góc với chuyển động và phụ thuộc vào diện tích tiếp giáp S của các phần tử chất lỏng.
Đó là định luật về ma sát nhớt của Newton. Hệ số tỷ lệ ở đây được gọi là hệ số nhớt động lực (). Chất lỏng mà ở đó ma sát nội phụ thuộc vào độ thay đổi vận tốc tương tự như thế được gọi là chất lỏng Newton hay chất lỏng có độ nhớt tuyến tính.
Newton đã xác định độ lớn của hệ số nhớt động lực (và tính đúng đắn của định luật này) nhờ một thí nghiệm không mấy phức tạp: ông di chuyển theo bề mặt chất lỏng một bản phẳng với những vận tốc khác nhau. Để duy trì cho vận tốc này không đổi, phải cung cấp một lực mà khi độ sâu chất lỏng không lớn dường như tỷ lệ thuận với diện tích S và vận tốc v của bản phẳng, và tỉ lệ nghịch với độ sâu h của chất lỏng:
Và mặc dù khi tăng chiều sâu chất lỏng h, lực ma sát nhớt của bản phẳng cũng không nhỏ đến mức triệt tiêu, công thức này mô tả khá chính xác sự tương tác giữa các phần tử chất lỏng tiếp giáp nhau. Hiệu số vận tốc càng lớn thì lực tương tác giữa chúng càng lớn, hãm chậm các phần tử chuyển động quá nhanh lại chút ít và đẩy nhanh các phần tử chuyển động quá chậm. Kết quả là chuyển động tương đối trong chất lỏng không còn nữa (nhưng đôi khi điều đó có thể diễn ra không mau chóng lắm). Trong cách diễn đạt chặt chẽ hơn, sự phụ thuộc tuyến tính của ma sát nhớt vào sự thay đổi vận tốc chuyển động của chất lỏng được gọi là phương trình Navier - Stokes. Nó đã chú ý đến tính nén được của chất lỏng và chất khí và khác với định luật Newton, nó đúng chẳng những ở gần bề mặt vật rắn mà còn cả ở từng điểm của chất lỏng (ở sát bề mặt vật rắn trong trường hợp chất lỏng không nén được thì phương trình Navier - Stokes và định luật Newton trùng nhau). Mọi chất khí thỏa mãn điều kiện liên tục (về độ dày đặc), thì thỏa mãn cả phương trình Navier – Stokes, nghĩa là chúng là các chất lỏng Newton.
Trong số các chất lỏng ta thường hay gặp các chất mà động lực học của chúng được mô tả bởi các hệ thức phức tạp hơn (so với phương trình Navier - Stokes): chẳng hạn như các thuốc mầu, sơn dầu sền sệt, vecni, các dung dịch của ngành xây dựng, mật ong, nhựa cây, đất sét, bùn lầy v.v... Nước, dầu xăng, rượu, glixêrin và nhiều chất lỏng khác là các chất lỏng Newton.
Độ nhớt của chất lỏng và chất khí thường chỉ đáng kể ở các vận tốc tương đối béo bởi vậy đôi khi người ta nói rằng thủy động lực học của Euler là một trường hợp riêng (trường hợp giới hạn) của thủy động lực học các vận tốc lớn của Navier - Stokes. Ở các vận tốc lớn phù hợp với định luật ma sát nhớt của Newton, lực cản vật tỷ lệ với vận tốc. Ở các vận tốc lớn, khi độ nhớt không còn đóng vai trò quan trọng, lực cản vật tỷ lệ với bình phương vận tốc (cũng đã dược Newton lần đầu tiên phát hiện và luận giải). Sự phụ thuộc này đã được nhà vật lý và kỹ sư người Anh Osborne Reynolds (1842 - 1912) nêu lên.
Giúp ta trả lời câu hỏi có cần phải chú ý tới độ nhớt hay không ta sử dụng một tiêu chí, đó là số Reynolds (Re). Nó bằng tỷ số giữa năng lượng chuyển động của phần tử chất lỏng đang chảy và công của các lực ma sát nội.
Ta hãy xét một phần tử chất lỏng hình lập phương có cạnh là 1. Động năng của phần tử này bằng:
Theo định luật Newton, lực ma sát tác dụng lên phần tử chất lỏng được xác định bởi.
Công của lực này khi dịch chuyển phần tử chất lỏng một đoạn l bằng:
còn tỷ số giữa động năng của phần tử chất lỏng và công của lực ma sát bằng:
Tỷ số gọi là số Reynolds.
Như vậy Re là một đại lượng không thứ nguyên đặc trưng cho vai trò tỷ đối của các lực nhớt.
Ví dụ nếu các kích thước của vật tiếp giáp với chất lỏng hay chất khí rất nhỏ thì ngay cả với một độ nhớt không lớn, Re vẫn sẽ không đáng kể và các lực ma sát đóng vai trò áp đảo. Ngược lại, nếu các kích thước của vật và vận tốc đều lớn, thì Re >> l và ngay cả độ nhớt lớn cũng hầu như không ảnh hưởng gì tới tính chất của chuyển động.
Tuy nhiên không phải bao giờ các số Reynolds lớn đều có nghĩa là độ nhớt không có vai trò gì. Như vậy, khi số Reynolds đạt được giá trị lớn (khoảng vài chục hay vài trăm nghìn) thì dòng chảy tầng (lớp) sẽ biến thành dòng chảy rối (cuộn xoáy), kéo theo các chuyển động hỗn độn, không dừng (nhiễu động) của chất lỏng. Có thể quan sát được hiện tượng này nếu mở từ từ vòi nước: một tia nước mảnh thường chảy đều đều nhưng khi tăng vận tốc nước dòng nước không còn chảy đều nữa. Trong dòng nước bị sức ép lớn, các hạt chất lỏng chuyển chỗ một cách hỗn độn chúng dao động và toàn bộ chuyển động bị xáo trộn mạnh.
Sự xuất hiện tính cuộn xoáy (chảy rối) làm tăng rất mạnh sức cản chính diện của các khí cụ bay cùng các đặc tính tương tự như sức cản (trong ống dẫn nước vận tốc dòng cuộn xoáy nhỏ hơn vận tốc dòng chảy thành tầng khi chịu cùng các chênh lệch áp suất như nhau). Nhưng không phải bao giờ tính cuộn rối cũng đều là dở cả. Do có sự xáo trộn rất mạnh trong chuyển động cuộn xoáy nên sự trao đổi nhiệt - sự làm nguội hay sự nóng lên của các hệ thống thiết bị - diễn ra mạnh mẽ hơn nhiều: các phản ứng hóa học lan toả nhanh hơn.
Tuy nhiên điều đáng ngạc nhiên nhất là sự chảy rối có thể làm giảm sức cản của một số vật. Đặc điểm này được sử dụng trong thực tiễn mà một ví dụ dễ thấy nhất là trong thể thao. Nếu chú ý tới hình dạng của quả bóng trong trò chơi gôn (golf) thì dễ dàng nhận thấy rằng nó không tròn đều một cách lý tưởng mà trên bề mặt có những chỗ lõm nhỏ. Chúng đóng vai trò tác nhân gây cuộn xoáy - biến dòng khí chảy theo tầng thành dòng khí chảy rối. Hóa ra là trong dòng khí chảy rối sức cản của quả bóng nhỏ hơn khoảng sáu lần so với trong dòng chảy tầng do đó nó bay được xa hơn. Các cầu thủ bóng chuyền cũng dùng hiện tượng chảy rối trong kỹ thuật phát bóng đặc biệt để cho lúc mới bay khỏi tay các cầu thủ quả bóng được bao quanh bằng một dòng không khí cuộn xoáy. Sức cản chảy rối đối với quả bóng tương đối nhỏ nhưng không bằng không do vậy vận tốc quả bóng sẽ giảm xuống, kết quả là luồng khí bao quanh quả bóng chuyển thành chế độ chảy tầng. Điều này làm tăng đáng kể sức cản làm cho quỹ đạo của bóng bị ngoặt xuống dưới. Diễn biến phức tạp này của quả bóng thường đánh lừa được cầu thủ thiếu kinh nghiệm của đối phương. Vận tốc ban đầu của quả bóng trong những cú phát bóng quá tinh ranh có thể thay đổi trong những giới hạn không lớn. Thường quả bóng được phát đi hoặc quá mạnh và khi đó thực tế là cả đoạn bay của nó diễn ra trong chế độ chảy rối hoặc quá yếu - khi đó dòng khí chảy quanh quả bóng ở chế độ chảy tầng.